Role of caspases in renal tubular epithelial cell injury.

نویسنده

  • Gur P Kaushal
چکیده

The regulation of cell death has been investigated in a number of clinical disorders including renal ischemic and toxic acute renal failure. Caspases play a crucial role in the execution or final phase of cell death by cleaving and inactivating various structural and functional intracellular proteins that are essential for cell survival and proliferation. Evidence is now emerging to implicate the caspase pathway in a variety of renal diseases including the pathogenesis of acute renal failure. Among the 14 known members of the caspase family thus far identified several executioner caspases including caspases-3, -6, and -7 and the proinflammatory caspase including caspase-1 may participate in the final degradation of intracellular proteins. The activation of these caspases is regulated by the receptor- and mitochondrial-mediated cell signaling pathways as well as by the endoplasmic reticulum stress response. While the role of some caspases in renal injury is emerging, the roles of various proinflammatory and other executioner caspases remain to be determined. Although many pro- and anti-apoptotic molecules that act upstream of caspase activation have been identified, their regulation is yet to be determined in the pathogenesis of renal injury. A precise description of caspase-mediated cell death pathway and regulation of caspase activation is, therefore, critical to the understanding of the mechanism of renal injury and to the development of therapeutic targets that prevent renal diseases and preserve renal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangeretin protects renal tubular epithelial cells against experimental cisplatin toxicity

Objective(s): Cisplatin is an effective antineoplastic agent; its clinical utility, however, is limited by a few salient toxic side effects like nephrotoxicity. This study aimed to determine the potential protective effects of tangeretin, a citrus-derived flavonoid, against renal tubular cell injury in cisplatin-induced renal toxicity of rats.Materials and Methods: Tangeretin was injected intra...

متن کامل

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

Effect of ground black seeds (Nigella sativa L.) on renal tubular cell apoptosis induced by ischemia/reperfusion injury in the rats

Objective(s): The aim of this study was to evaluate the effects of ground black seeds on renal tubular cell apoptosis following ischemia/reperfusion (I/R) injury in rats. Materials and Methods: Forty male Wistar rats were randomly allocated into 5 equal groups including Sham, I/R model and three I/R+ black seeds (5, 10 and 20%)-treated groups. I/R groups’ kidneys were subjected to 60 min of isc...

متن کامل

Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger.

Renal tubular epithelial cell (RTC) apoptosis causes tubular atrophy, a hallmark of renal disease progression. Apoptosis is generally characterized by reduced cell volume and cytosolic pH, but epithelial cells are relatively resistant to shrinkage due to regulatory volume increase, which is mediated by Na(+)/H(+) exchanger (NHE) 1. We investigated whether RTC apoptosis requires caspase cleavage...

متن کامل

Tissue-specific deletion of Crry from mouse proximal tubular epithelial cells increases susceptibility to renal ischemia reperfusion injury

The murine cell surface protein Crry (complement receptor 1-related protein/gene y) is a key complement regulator with similar activities to human membrane cofactor protein (MCP) and decay-accelerating factor. MCP has a critical role in preventing complement-mediated tissue injury and its mutation has been implicated in several human kidney diseases. The study of Crry in mice has relevance to u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Seminars in nephrology

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2003